

Institute of Automation and Information Technologies Department of Automation and Control

EDUCATIONAL PROGRAM 6B07103-AUTOMATION AND ROBOTIZATION

code and name of the educational program

Code and classification of the field of education: **6B07 Engineering**, manufacturing and construction industries

Code and classification of areas of study: **6B071 Engineering and Engineering**

Education Program Group: **B063–Electrical engineering and automation**

NQF level: **6** ORC level: **6**

Duration of study: 4 years Volume of credits: 240 credits

Almaty 2023

The educational program «6B07103 - Automation and robotization» was approved at a meeting of the Academic Council of KazNITU named after K.I. Satpayev.

Protocol № 5 «24» 11 2022 y.

Reviewed and recommended for approval at the meeting of the Teaching and Methodological Council of KazNITU named after K.I. Satpayev.

Protocol № 3 «17» 11 2022 y.

The educational program «6B07103 - Automation and robotization» has been developed by the academic committee of «6B071 Engineering and Technology».

FULL NAME	Scientific	Position	Workplace	Caption
	degree/			
	academic title			
	Academic Commi			
Aldiyarov	Candidate of	Head of the	NAO "Kazakh	
Nakhypbek	Physical and	Department	National Research	de
	Mathematical	"Automation and	Technical University	af
	Sciences	Control"	named after	
			K.I.Satpayev",	
			cell phone:	
			+77772746301	
Teaching staff:				
Suleimenov	Doctor of	Professor	NAO "Kazakh	
Batyrbek	Technical		National Research	12
	Sciences		Technical University	0
			named after	
			K.I.Satpayev",	
			cell phone:	
			+77017013722	
Beisembayev	Candidate of	Associate Professor	NAO "Kazakh	
Akambay	Technical		National Research	
	Sciences, docent		Technical University	9/0
			named after	-
			K.I.Satpayev",	
			cell phone:	
			+77783337261	
Sarsenbayev	Candidate of	Associate Professor	NAO "Kazakh	
Nurlan	Technical		National Research	(
	Sciences		Technical University	call ?
			named after	
			K.I.Satpayev",	
			cell phone:	
			+77055716781	

Shiryayeva Olga	Candidate of Technical Sciences	Associate Professor	NAO "Kazakh National Research Technical University named after K.I.Satpayev", cell phone: +77776470154	0
Kulakova Elena	PhD	Senior Lecturer	NAO "Kazakh National Research Technical University named after K.I.Satpayev", cell phone: +77771853069	M
Employers:				
Abdigaliyev Serik		Chief	«HONEYWELL - AUTOMATIC CONTROL SYSTEM LLP»	Mad
Zikirbai Kuanysh	PhD	Head of Innovation and Information Technology Department	Saiman Corporation LLP, cell phone: +77716005070	Zief

Table of contents

	List of abbreviations and symbols	5
1.	Description of the educational program	6
2.	Purpose and objectives of the educational program	7
3.	Requirements for evaluating the learning outcomes of an	7
	educational program	
4.	Passport of the educational program	9
4.1.	General information	9
4.2.	The relationship between the attainability of the formed	11
	learning outcomes in the educational program and academic	
	disciplines	
5.	Curriculum of the educational program	32
6.	Additional educational programs (Minor)	34

List of abbreviations and symbols

EP Educational program

Automated process control system APCS

Automatic control systems Computer-aided design system ACS

CAD

DAC D/A Converter

ADC Analog to digital converter

1 Description of the educational program

The educational program (hereinafter EP) is a set of documents developed by the Kazakh National Research Technical University named after K.I. Satpayev and approved by the Ministry of Education and Science of the Republic of Kazakhstan.

The educational program 6B07103 - Automation and robotics in the direction of personnel training 6B071- "Engineering and Engineering" involves the training of highly qualified specialists in the field of operation, maintenance, development and implementation of automated process control systems (APCS), robotic technological complexes (RTC) in various industries.

A bachelor who graduates from this program acquires the following competencies: operation and maintenance of automated process control systems and RTK in various industries, development and implementation of technical, information and software for industrial production process control systems and RTK, conducting scientific research in the field of integrated automation and robotization of production processes , using modern software for designing and modeling production processes.

The objects of professional activity of the bachelor are: subdivisions of industrial enterprises for the operation and maintenance of APCS and RTK of various industries, subdivisions of state institutions for the operation and maintenance of automated information and control systems for various purposes, subdivisions of design organizations for the development, implementation and technical support of APCS and RTK of various industries, subdivisions of scientific organizations for research in the field of automation of technological processes, robotization of technological operations.

The types of professional activity are:

In the field of organizational and managerial activities: to be the head of the group of the unit for the operation, maintenance of elements, APCS and RTK in various industries;

In the field of experimental research activities: to be a specialist in conducting experimental research on objects of automation and robotization of industrial production;

In the field of research activities: to be an engineer in a scientific laboratory for the research and development of modern APCS and RTK in various industries;

In the field of design and development: to be a development and design engineer APCS and RTK in various industries.

2. Purposes and objectives of the educational program

Purpose of the EP: The purpose of the educational program 6B07103—"Automation and robotization" is the creation of conditions for an effective educational process for the formation and development of personal, sociocultural, general engineering and professional competencies in the field of automation and robotics, meeting the needs of students in intellectual, creative and professional development.

Tasks of the OP:

- providing social and humanitarian education based on knowledge of the laws of socio-economic development of society, the history of Kazakhstan, modern information technologies, the state language, foreign and Russian languages as a means of interethnic communication;
- providing in-depth knowledge of a natural-science, general technical nature, as the foundation of vocational education;
- providing deep theoretical knowledge and practical skills in the fieldautomation, robotization, artificial intelligence and automated control;
- ensuring the adaptation of professionally oriented skills to the changing needs of society.

3. Requirements for evaluating the learning outcomes of an educational program

OP 6B07103 - "Automation and robotization" ensures that all students achieve the learning outcomes necessary for professional activities. Upon completion of the program, students must:

- possess the knowledge, skills and abilities to implement a systematic approach to the development and implementation of automation systems and robotization of production processes.
- to be able to make a choice of measuring instruments and automation equipment, measure technological parameters, configure and operate automation elements and devices.
- demonstrate knowledge of sections of higher mathematics, physics and other natural sciences and apply them to solve engineering problems in the field of automation and control.
- own modern computer, information, communication technologies and software used in the creation and operation of automation systems.
- be able to put into practice knowledge on the main types of linear and non-linear automatic control systems, their mathematical description and modeling, perform calculations on the analysis and synthesis of control systems.
- -have programming skills in high-level languages, tools and programming languages for microcontrollers, software for modeling and researching process control systems.
 - be able to navigate the current economic, political and corruption situation.
- own methods of information processing and synthesis of automation systems, methods of designing and programming data management systems. Use in practice the functionality of Scada-systems.
- develop structural, functional and other automation schemes, analyze reference and regulatory literature, draw up technical documentation. Develop technical, software, mathematical, algorithmic, informational and other support for process control systems.
 - use the technical capabilities of microprocessor technology, means of

receiving and transmitting information and software products to solve automation problems.

- analyze and evaluate the state of automation objects, technological processes and industries. Make qualified decisions on the use of automation elements and systems, their installation, commissioning and operation.
- -use modern tools and information and communication technologies in the design and implementation of process and production control systems.

4. Passport of the educational program

4.1. Generalintelligence

No.	Field name	Note
1	Code and classification of	6B07 Engineering, manufacturing and construction industries
	the field of education	
2	Code and classification of	6B071 Engineering and engineering
	areas of study	
3	Group of educational	B063-"Electrical Engineering and Automation"
	programs	
4	Name of the educational	6B07103–Automation and robotization
	program	
5	Brief description of the educational program	The educational program 6B07103 - Automation and robotics in the direction of personnel training 6B071- "Engineering and engineering" involves the training of highly qualified specialists in the field of automation, robotics, artificial intelligence and automated control.
6	Purpose of the OP	The purpose of the educational program 6B07103—"Automation and robotization" is the creation of conditions for an effective educational process for the formation and development of personal, socio-cultural, general engineering and professional competencies in the field of automation and robotics, meeting the needs of students in intellectual, creative and professional development.
7	OP type	New OP
8	NQF level	6
9	ORC level	6
10	Distinctive features of the OP	Not
11	List of competencies of the educational program:	A bachelor who graduates from this program acquires the following competencies: operation and maintenance of automated process control systems and RTK in various industries, development and implementation of technical, information and software for industrial production process control systems and RTK, conducting scientific research in the field of integrated automation and robotization of production processes, using modern software for designing and modeling production processes.
12	Learning outcomes of the educational program:	PO1 Possess the knowledge, skills and abilities to implement a systematic approach to the development and implementation of automation systems and robotization of production processes. PO2 Be able to select measuring instruments and automation equipment, measure technological parameters, configure and operate automation elements and devices. PO3 Demonstrate knowledge of sections of higher mathematics, physics and other natural sciences and apply them to solve engineering problems in the field of automation and control. PO4 Own modern computer, information, communication technologies and software used in the creation and operation of automation systems.

		DOS To be able to put into practice knowledge on the main types
		RO5 To be able to put into practice knowledge on the main types
		of linear and non-linear automatic control systems, their
		mathematical description and modeling, perform calculations
		on the analysis and synthesis of control systems.
		RO6 To have programming skills in high-level languages,
		programming tools and languages for microcontrollers,
		software for modeling and researching process control systems.
		PO7 Be able to navigate the current economic, political and
		corruption situation.
		RO8 Own methods of information processing and synthesis of
		automation systems, methods of designing and programming
		data management systems. Use in practice the functionality of
		Scada-systems.
		RO9 Develop structural, functional and other automation
		schemes, analyze reference and regulatory literature, draw up
		technical documentation. Develop technical, software,
		mathematical, algorithmic, informational, etc. provision of
		process control systems.
		RO10 Use the technical capabilities of microprocessor
		technology, means of receiving and transmitting information
		and software products to solve automation problems.
		RO11 Analyze and evaluate the state of automation objects,
		technological processes and industries. Make qualified
		decisions on the use of automation elements and systems, their
		installation, commissioning and operation.
		PO12 Use modern tools and information and communication
		technologies in the design and implementation of process and
		production control systems.
	Form of study	full-time
	Training period	4 years
	Volume of loans	240 credits
	Languages of instruction	Kazakh, Russian
	Awarded Academic Degree	Bachelor of Engineering and Technology
18	Developer(s) and authors:	Aldiyarov N.U., Zhanabaeva E.Zh.

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and academic disciplines

No.	Name of the discipline	Brief description of the discipline	Amount				Form	ed lea	rning	outco	mes (c	codes)			
			of credits	PO1	PO2	PO3	PO4	RO5	RO6	RO7	RO8	RO9	RO10I	RO11	RO12
		Cycle of general educa	tion dis	scipli	nes				•				•		
		Required Com	ponent	_											
1	English language	English is a discipline of the general education cycle. After determining the level (according to the results of diagnostic testing or IELTS results), students are divided into groups and disciplines. The name of the discipline corresponds to the level of English proficiency. When moving from level to level, prerequisites and postrequisites of disciplines are observed.		V											
2	Kazakh (Russian) language	The socio-political, socio-cultural spheres of communication and functional styles of the modern Kazakh (Russian) language are considered. The course covers the specifics of the scientific style in order to develop and activate the professional communication skills and abilities of students, allows students to practically master the basics of the scientific style and develop the ability to perform structural and semantic analysis of the text.		v											
3	Information and Communication Technologies (in English)	Required component. The task of studying the discipline is to acquire theoretical knowledge about information processes, new information technologies, local and global computer networks, methods of information protection; obtaining skills in the use of text editors and spreadsheet processors; creation of databases and various categories of application programs.						V							
4	History of Kazakhstan	The course studies historical events, phenomena, facts, processes that took place on the territory of Kazakhstan from ancient times to the present day. The sections of the discipline include: the steppe empire of the Turks; early feudal states on the territory of Kazakhstan; Kazakhstan in the period of			V										

		the Mongol conquest (XIII century), medieval states								I	
		in the XIV-XV centuries. The era of the Kazakh									
		Khanate XV-XVIII centuries. Kazakhstan as part of									
		the Russian Empire, Kazakhstan during the Great									
		Patriotic War, in the period of independence and at									
		the present stage.									
_	Philosophy	Philosophy forms and develops critical and creative	5								
-	rimosopny	thinking, worldview and culture, provides knowledge	3					V			
		about the most general and fundamental problems of									
		being and endows them with a methodology for									
		solving various theoretical practical issues.									
		Philosophy expands the horizon of vision of the									
		modern world, forms citizenship and patriotism,									
		contributes to the education of self-esteem,									
		awareness of the value of human existence. It teaches									
		to think and act correctly, develops the skills of									
		practical and cognitive activity, helps to seek and find									
		ways and means of life in harmony with oneself,									
		society, and the world around.									
-	Socio political knowledge module	Studying the course contributes to the formation of	3								
	(sociology, politology)	students' theoretical knowledge about society as an	3	V							
	(sociology, politology)	integral system, provides the political aspect of									
		training a highly qualified specialist on the basis of									
		modern world and domestic political thought. The									
		discipline is designed to improve the quality of both									
		general humanitarian and professional training of									
		students. Knowledge in the field of sociology and									
		political science is necessary for understanding									
		political processes, for forming a political culture,									
		developing a personal position and a clearer									
		understanding of the measure of one's responsibility.									
7	Socio-political knowledge module		5		V						
	(culturology, psychology)	(culturology, psychology) is designed to acquaint	-		V						
		students with the cultural achievements of mankind,									
		for their understanding and assimilation of the main									
		forms and universal patterns of the formation and									
		development of culture. During the course of cultural									
		studies, general problems of the theory of culture,									
		leading cultural concepts, universal patterns and									
		mechanisms for the formation and development of									
		culture, the main historical stages of the formation									

		1 1 1				1		1			
		and development of Kazakhstani culture are									
		considered. It also studies the laws of the emergence,									
		development and functioning of mental processes,									
		states, properties of a person engaged in a particular									
		activity, the laws of development and functioning of									
		the psyche as a special form of life.									
		Cycle of general educa	tion di	scipli	nes						
		University com	ponen	t			 		 		
8	Fundamentals of anti-corruption	The course introduces students to the improvement of	5					v			
	culture and law	socio-economic relations of Kazakhstan society,						'			
		psychological features of corrupt behavior. Special									
		attention is paid to the formation of an anti-corruption									
		culture, legal responsibility for acts of corruption in									
		various spheres. The purpose of studying the									
		discipline «Fundamentals of anti-corruption culture									
		and laws is to increase public and individual legal									
		awareness and legal culture of students, as well as the									
		formation of a knowledge system and a civic position									
		on combating corruption as an antisocial									
		phenomenon. Expected results: to realize the values									
		of moral consciousness and follow moral norms in									
		everyday practice; to work on improving the level of									
		moral and legal culture; to use spiritual and moral									
9	Fundamentals of Economics and	mechanisms to prevent corruption.	5							+	
9		Discipline studies the foundations of economics and	3					V			
	Entrepreneurship	entrepreneurial activity from the point of view of									
		science and law; features, problematic aspects and									
		development prospects; the theory and practice of									
		entrepreneurship as a system of economic and									
		organizational relations of business structures; The									
		readiness of entrepreneurs for innovative									
		susceptibility. The discipline reveals the content of									
		entrepreneurial activity, the stages of career,									
		qualities, competencies and responsibility of the									
		entrepreneur, theoretical and practical business									
		planning and economic examination of business									
		ideas, as well as the analysis of the risks of innovative									
		development, the introduction of new technologies									
L		and technological solutions.	<u></u>							<u> </u>	
10	Ecology and life safety	The discipline studies the tasks of ecology as a	5							v	
		science, environmental terms, the laws of the								•	

		functioning of natural systems and aspects of environmental safety in the conditions of labor activity. Monitoring of the environment and management in the field of its safety. Sources of pollution of atmospheric air, surface, groundwater, soil and ways to solve environmental problems; life safety in the technosphere; natural and man-made emergencies.										
11	Fundamentals of Scientific Research Methods	The course introduces students to the improvement of socio-economic relations of Kazakhstan society, psychological features of corrupt behavior. Special attention is paid to the formation of an anti-corruption culture, legal responsibility for acts of corruption in various spheres. The purpose of studying the discipline «Fundamentals of anti-corruption culture and law» is to increase public and individual legal awareness and legal culture of students, as well as the formation of a knowledge system and a civic position on combating corruption as an antisocial phenomenon. Expected results: to realize the values of moral consciousness and follow moral norms in everyday practice; to work on improving the level of moral and legal culture; to use spiritual and moral mechanisms to prevent corruption.	5	v							v	
	,	Cycle of basic di	_			•	<u> </u>		l			
12	Mathematics I	The course is devoted to the study of the basic concepts of higher mathematics and its applications. The main provisions of the discipline are applied in the teaching of all general education engineering and special disciplines taught by graduate departments. The course sections include elements of linear algebra and analytical geometry, an introduction to analysis, differential calculation of functions of one and several variables. Methods for solving systems of equations, problems of using vector calculations in solving problems of geometry, mechanics, and physics are considered. Analytical geometry on a plane and space, differential calculation of functions of one variable, derivatives and differentials, study of the behavior of functions, derivative and gradient in	5		v							

	T		1	1	1			Г	-	1	1	
		direction, extremum of a function of several										
		variables.	_									
13	Mathematics II	The discipline is a continuation of Mathematics I.	5			V						
		sections of the course include integral calculus of a										
		function of one variable and several variables, series										
		theory. Indefinite integrals, their properties and										
		methods of their calculation. Certain integrals and										
		their application. Incorrect integrals. Numerical										
		series theory, functional series theory, Taylor and										
		Macloren Series, application of series to approximate										
		calculations.										
14	Physics I	Objectives: to study the basic physical phenomena	5			V						
		and laws of classical, modern physics; methods of										
		physical research; the relationship of physics with										
		other sciences. The following topics are considered:										
		mechanics, dynamics of rotational motion of a solid										
		body, mechanical harmonic waves, fundamentals of										
		molecular kinetic theory and thermodynamics,										
		transport phenomena, continuum mechanics,										
		electrostatics, direct current, magnetic field, Maxwell										
		equations.										
15	Physics II	The course studies the laws of physics and their	5			V						
		practical application in professional activity. Solving				•						
		theoretical and experimental-practical educational										
		problems of physics for the formation of the										
		foundations in solving professional problems.										
		Assessment of the degree of accuracy of the results										
		of experimental or theoretical research methods,										
		modeling of physical condition using a computer,										
		study of modern measuring equipment, development										
		of skills for conducting test studies and processing										
		their results, distribution of the physical content of										
		applied tasks of the future specialty.										
16	Engineering and computer	The discipline is aimed at the study of methods for	5			V	V					
	graphics	the image of objects and the general rules of drawing,				•						
		using computer graphics; the study of the basic										
		principles and geometric modeling approach and										
		methodology for developing applications with a										
		graphical interface; the formation of skills in the use										
		of graphic systems for the development of drawings,										
		using 2D and 3D modeling methods.										

17	Introduction to the specialty and engineering ethics	The study of the discipline is the assimilation of the theoretical foundations of the ethics of business communication and the principles of ethics of business relations; features and problems associated with professional and in particular engineering ethics; The purpose of the course is to master the basics of automation, robotization, the ethical code of an engineer. As a result of studying the discipline, the student must know automation and process control; industrial robotics.	4					V	
18	Theoretical foundations of electrical engineering	It is considered in the discipline: basic concepts and definitions used in electrical engineering; modern methods of modeling of electromagnetic processes; methods of analysis of electric and magnetic circuits; numerical methods of the analysis of electrical circuits; basic laws and principles of electrical engineering, properties and characteristics of electrical circuits; methods of analysis of electrical circuits in steady state and transient modes; selection of the optimal method of calculation, to determination of the main parameters and characteristics of electrical circuits.	5	V					V
19	Basics of electronics	Formation of students' knowledge of the basics of electronics methods for designing and calculating electronic devices. Obtaining knowledge, skills and abilities to read structural and schematic diagrams of electronic devices, to understand the principles of their work and make the right choice of electronic components.	5	V					
20	Power electronics automation	The discipline is one of the basic special courses for the specialty of automation and robotics. The purpose of this course is to give students a fairly complete understanding of the electrical energy converters, their components, topology, mathematical descriptions, basic methods of analysis. As a result, students master the principles of operation of power electronic devices of automation; knowledge of the correct choice of elements and automation devices, calculate their characteristics.	4	v					
21	Process automation facilities	The content of the discipline "Process automation facilities" includes the study of mathematical	5						V

		methods of software control of robots, the basics of								
		the development of algorithms and cyclograms of								
		robot control. The structure and composition of								
		cyclic, positional and contour systems of software								
		control of robots, systems of digital software control								
		of machines, machines are considered.								
22	Technology of robotic production	The discipline "Technology of robotic production"	6							
22	reciniology of foodic production	sets as the purpose to teach students of methodology	U	V						
		of design of technological processes in the conditions								
		of the automated production, independent								
		development of technological processes of assembly								
		of cars and production of their details. Questions of								
		scientific bases of technology of mechanical								
		engineering, preparation of robotic production,								
		choice of preparations, the principles of design of								
		technological processes in the conditions of								
		automation are considered. Problems of studying of								
		discipline is acquisition of knowledge of ensuring								
		accuracy, control and tests of machine-building								
		production. As a result of studying of discipline the								
		trainee, has to know: design stages of the production								
		technology of cars, standard technological processes								
		of production of details of cars; the used equipment								
		and the equipment in the conditions of robotic								
		production. To be able: to put and solve problems of								
		technical training of production; to develop								
		technological processes of production of cars and								
		details of the required quality in the conditions of								
22	N. 1 1	robotic production.	~							
23	Mathematical foundations of	This discipline is intended to study the methods of	5		V					
	control theory	development of object models, control systems. The								
		following sections are studied: the concept of the set,								
		set operations, relations and mapping of sets, the								
		concept of graph, adjacency and incidence matrices,								
		graph operations, the concept of logic variable,								
		function, operations on logical variables, basic logic								
		functions, notations of logical functions, the concept								
		of matrix, matrices operations, types of matrices,								
		eigenvalues, Cayley-Hamilton theorem, matrix								
		function, the concept of system, the description of the								
		systems. This course is intended for formation of the								

		mathematical foundations of the development of models of control systems among students. As a result of the acquirement of the discipline the will be able to formulate mathematical problems, develop mathematical models, select mathematical methods and algorithms for solution of the problem.									
	Optimization methods	The discipline is designed to form students' systematized knowledge of modern methods of optimization and their application in the field of process control. Objective: To train students to apply optimization methods to find the extrema of functions in various ways. As a result, students master the formulation of optimization problems for: the synthesis of systems for optimal control of technological processes, the reduction of material balances in MES systems, etc.	5		V		V				
25	Intelligent Process Control Systems	The discipline is designed to form students' knowledge of the theoretical foundations and practical skills in building process control systems using intelligent fuzzy logic technologies. The purpose of the course is to train a specialist who is able to use in practice the theory, methods and means of synthesis of intelligent control systems. As a result of studying the discipline, the student must know the basics of the theory of fuzzy sets; the basics of creating fuzzy inference systems for control purposes.	5						v		
	Computer modeling and programming in the MatLab environment	The discipline is designed to develop students' skills in programming and mathematical modeling in the MATLAB environment. The purpose of the course is programming and standard MATLAB functions, such packages (applications) as Control System Toolbox, Simulink, Stateflow, Deep Learning Toolbox and Fuzzy Logic Toolbox are studied. As a result of mastering the discipline, students have full tools for analysis, synthesis of control systems and development of intelligent algorithms.	6			v					
27	Programming and algorithmization	The goals and objectives of the discipline Programming and algorithmization - to teach students structural programming, to acquire knowledge and skills of algorithmization in its	5			V					

		structural version, to master all kinds of methods for solving problems implemented in a programming language, to develop logical and algorithmic thinking of students, to form the skills of competent program development, to deepen knowledge, skills and abilities to solve problems in programming and algorithmization.									
28	Technological measurements and devices	The discipline covers a wide range of methods and tools for measuring and presenting information about the state of technological processes, ensuring their high-performance, economic and safe operation. The purpose of the course is to give the future specialist the necessary amount of knowledge in studying the basic concepts, goals and principles, the ability to analyze metrological indicators and physical principles of measurement. Analyze the operation of the system based on the quality indicators of measuring instruments and systems.	5		v						
29	Training practice	The tasks of educational practice are to obtain professional primary skills and abilities, prepare students for a conscious and in-depth study of basic and general educational disciplines, and familiarize themselves with the specifics of future professional activities. Educational practice can be carried out on the basis of departments, laboratories, enterprises and institutions with various forms of ownership, the areas of activity of which are related to the future professional activities of bachelors. The student can, at his own discretion, choose a task from the proposed block of tasks, which is agreed with the head of practice. In accordance with the tasks of practice, the student performs an individual task. The student keeps records of the practice in the practice diary. At the end, students submit diaries and reports, the acceptance of final reports is carried out by a commission from among the teaching staff of the department. The final grade for the practice is defined as the assessment of the head of the practice from the department for the defense of the report. Educational practice is a mandatory type of practice	2	>			V		>	V	

		at the end of the graduating department.												
		Cycle of basic disciplines C	ptional	com	pone	ent	II .	U.	<u> </u>	<u>l</u>	Ц	l.	<u> </u>	
	Microelectronics	The principles of operation, parameters, characteristics and features of the use of semiconductor devices are considered. Designing various circuits of amplifiers of electrical signals and generators based on diodes, bipolar and field-effect transistors and testing the features of their functioning. Operational amplifiers. Differential amplifiers. Feedback. The influence of feedback on the main indicators and characteristics of amplifiers. Power amplifiers. Filter classification and composition.	5									V		
31	Microcontroller programming	Microcontroller Programming This course is intended for students to study the current state of microprocessor and microcontroller control systems. The purpose of the course is the formation of bachelor's knowledge on the principles of building digital data processing tools, the features of the organization of the work of microprocessor devices and the use of microprocessors in control systems of technical objects. As part of the course, the student will master the microcontrollers of the AVR family. AVR command system. Means of input/output in microprocessor systems. Programming of microprocessor systems.	5					~						
32	Microcontroller programming for robotic systems	This discipline is designed to study the methods of programming robotic systems. The purpose of the course: the classification of microcontrollers used in robotic systems, the structure of the microcontroller, the organization of the interruption of the microcontroller, programming languages. As a result of mastering the discipline, the student will be able to work in the environment for developing application software for RTS, connect peripheral devices to microcontrollers, perform remote control of the robot, and implement the terms of reference. build and analyze algorithms for solving typical problems.	5									v		
33	Metrology and measurements	Discipline covering a wide range of methods and tools for measuring and presenting information about	5		V									

		the state of technological processes. The purpose of the course is the necessary amount of knowledge in the study of basic concepts, goals and principles, the ability to analyze metrological indicators and physical principles of measurement. As part of the course, the student will learn to choose measuring instruments depending on the purpose and tasks of automation, to develop and design measuring instruments and measuring systems.								
	Electrical measuring instruments	This discipline is intended for theoretical and practical training of engineers profile in the field of electrical engineering. This course deals with tasks related to the measurement of process parameters in the field of automation and control. The course content provides a classification of methods for converting and converting non-electric and electrical, specific types of measuring instruments used to measure technological parameters in various areas of production.	5				v			
	Telecommunication networks of industrial enterprises	The discipline "Telecommunication networks of industrial enterprises" provides for the study of the main parameters and characteristics of telecommunication networks of industrial enterprises, the basics of their structural construction, taking into account modern trends in the development of communication networks, in-depth study of functional diagrams, design methods and integration of telecommunication networks and systems.	5			V				
36	Fiber optic sensors and systems	The course "Fiber Optic Sensors and Systems" discusses the principle of operation, design and parameters of modern optoelectronic and fiber optic sensors for various purposes, basic circuit and technical solutions that determine the structure and functionality of modern sensors, especially in industrial technologies.	5	V					V	
37	Actuators of automation systems	The discipline presents basic knowledge and skills in the field of actuators of automation, industrial electronics, as well as methods for studying the operating modes of electromechanical energy converters. The purpose of the course is to teach students to correctly calculate and select the actuators	5	V						

									1			
		of automation, as it is a mandatory element of the										
		control system. As part of the course, the student will										
		master the practical use of automation actuators:										
		electromechanical devices, electromagnetic devices.										
38	Industrial robots and manipulator	In the course of studying the discipline, students must	5	V								
	drives	master the principle of operation, the main units and										
		elements, advantages and disadvantages, a										
		mathematical description of industrial robot drives.										
		As a result of studying the discipline, students should										
		know the operation of a pneumatic drive, a hydraulic										
		drive and an electric drive of industrial robots. To be										
		able to analyze the operation of control systems for										
		drives of industrial robots.										
39	Functional units of digital	The course deals with the main functional units of	5				İ			v		
	automatics	digital automatics: triggers, registers, counters,								•		
		multiplexers, adders, control circuits, studying the										
		principle of operation, variants of functional										
		schemes. As a result of studying this discipline,										
		students should: have an idea of: - about the logical										
		and arithmetic foundations of the construction of										
		digital devices; - about the main functional units of										
		digital automatics; know: - principles of functioning										
		of logical devices; be able to: choose the appropriate										
		digital control system; be able to - choose a suitable										
		digital control system; - get an idea of the realized										
		functions of the digital control system.										
40	Automation elements and devices	The main purpose of studying this discipline is to	6									
10	a tatomation elements and devices	teach students the ability to choose the right	O		V						V	
		installation devices in automation systems. The										
		content of the discipline deals with the fundamentals										
		of the theory and principle of operation of actuators,										
		the issues of correct and effective selection and										
		calculation of actuators of automation systems. The										
		main definitions and explanations concerning the use										
		of setting devices in industrial automation are given.										
/ 1	Elements and devices of robotics		6									
41	Elements and devices of robotics	The discipline is aimed at teaching students the basics	0		V						V	
		of the theory and practice of an industrial electric										
		drive and is aimed at developing students' skills in										
		designing, calculating and modeling an electric drive,										
		expanding and strengthening knowledge in mastering										
		the methods of controlling production mechanisms										

		1.4		1				I	1		-	
		and their components in the field of modern electric										
		drives. Basic concepts, definitions and purpose of										
		industrial electric drives; study of the characteristics										
		and modes of operation of various electric drives;										
		study of various options for modern electric drives.										
		Cycle of major d										
		University com	-									
42	Nonlinear system of the automatic	The aim of the course is to teach students methods of	5				v					
	control	modeling and analysis of nonlinear systems of					·					
		automatic regulation, NSAR. The discipline studies										
		the basics of the theory of the NSAR. Methods of										
		mathematical description and modeling of the NSAR.										
		Precise methods of research of stability and self-										
		oscillation. Phase plane methods. Qualitative study of										
		the NSAR. Lyapunov's second method. The criterion										
		of absolute stability of V.M. Popov. Approximate										
		methods for the study of stability and self-										
		oscillations. Implementation of typical elements of										
		the NSAR for process control.										
43	Linear system of automatic control		5				T.					
		of the theory of linear automatic control systems,					V					
		methods of mathematical description of systems,										
		methods of mathematical description of systems, methods of stability and quality research. The content										
		covers the following topics: Basic principles and										
		diagrams of automatic control systems. Typical links										
		of automatic control systems. Time and frequency										
		characteristics of links and systems. Rules for										
		transforming structural schemes. Algebraic and										
		frequency methods of analyzing the stability of linear										
		automatic control systems. Direct and indirect										
		methods of assessing the quality of linear automatic										
11	Neural Network Automation	control systems.	A		+	+						
44		The purpose of the discipline is to study and master	4							V		
	Technologies	the skills of creating intelligent control systems based										
		on expert systems and neural networks. The										
		objectives of the discipline is to master the theoretical										
		foundations and acquire practical skills in the field of										
		creating control systems using methods of artificial										
		intelligence. This course is designed for students to										
		create control systems based on the methods of										
		artificial intelligence is preceded by a description and										

	T	. 1 1 1 1 1 2 01 1 1 1 1				1	 			1
		study based on the application of knowledge models								
		that reflect the different properties and patterns of								
		functioning of the control object.								
45	Industrial internship I	In order to consolidate and deepen the theoretical	2	V		V		V	V	
		knowledge gained by students in the learning								
		process, the acquisition of practical skills,								
		competencies and professional experience in the								
		educational program being taught, as well as the								
		development of best practices, a bachelor's internship								
		is carried out. Students have practical training at								
		enterprises, working directly at the workplaces of								
		students, performing specific production tasks,								
		consolidating theoretical knowledge. In the process								
		of practice, practice leaders and appointed specialists								
		at the workplace provide students with the necessary								
		assistance and monitor (control) the process of								
		internship in terms of meeting deadlines and content.								
		The student keeps personal records of the practice in								
		the practice diary.								
		At the end, students submit diaries and reports, the								
		acceptance of final reports is carried out by a								
		commission from among the teaching staff of the								
		department. The final grade for the practice is defined								
		as the assessment of the head of the practice from the								
		enterprise and the assessment of the head of the								
		practice from the department for the defense of the								
		report.								
		The result of the satisfaction of students, teaching								
		staff and employers with places, conditions and								
		content of practices, as well as the level of students								
		and teachers is the opinion and feedback from								
		organizations that provide bases for internships.								
		Industrial practice is a mandatory type of practice at								
		the end of the course conducted by the graduating								
		department.								
46	Industrial internship II	In order to consolidate and deepen the theoretical	3							+
+0	industrial memoring in	knowledge gained by students in the learning	3	V		V		V	V	
		process, the acquisition of practical skills,								
		competencies and professional experience in the								
		educational program being taught, as well as the								
Ь		development of best practices, a bachelor's internship								

				1					1	
		is carried out. Students have practical training at enterprises, working directly at the workplaces of								l
										l
		students, performing specific production tasks,								l
		consolidating theoretical knowledge. In the process								l
		of practice, practice leaders and appointed specialists								l
		at the workplace provide students with the necessary								l
		assistance and monitor (control) the process of								l
		internship in terms of meeting deadlines and content.								l
		The student keeps personal records of the practice in								l
		the practice diary.								l
		At the end, students submit diaries and reports, the								l
		acceptance of final reports is carried out by a								l
		commission from among the teaching staff of the								l
		department. The final grade for the practice is defined								l
		as the assessment of the head of the practice from the								l
		enterprise and the assessment of the head of the								l
		practice from the department for the defense of the								l
		report.								l
		The result of the satisfaction of students, teaching								l
		staff and employers with places, conditions and								l
		content of practices, as well as the level of students								l
		and teachers is the opinion and feedback from								l
		organizations that provide bases for internships.								l
		Industrial practice is a mandatory type of practice at								l
		the end of the course conducted by the graduating								l
		department.								İ
		Cycle of major di	sciplin	es	•			•	•	
		Selectable Com								
47	Microprocessor based systems in	This course is designed for students to build	6							
''	the control systems	distributed and concentrated control systems, the	O					V		l
	life control systems	principles of building industrial controllers,								l
		programming tools and programming languages of								İ
		industrial controllers. The following sections are								l
		studied: the principles of organization and								l
		application of different classes of microprocessor								l
		systems, the acquisition of programming skills of								l
		embedded systems, at the stages of system, structural								l
		and logical design a certain place is given to the								l
		design of hardware and software of microprocessor								l
		systems, methodology of selection of microprocessor								l
										l
	l	sets, features of development and debugging of								

		hardware and software systems.								
48	Capstone Research Project 1	The Capstone Project is a project-based course that final year students take to demonstrate what they have learned from their first year to the final year of the 6B07103 - Automation and Robotics curriculum. Applying it in a specific idea to create something new and solve a specific problem. The Capstone Project aims to improve the quality of student graduate work through the formation and development of students' critical thinking skills, as well as planning, organizing and conducting scientific research.	6	v		V		v	v	
49	Capstone research project 2	The Capstone Project 2 course is a continuation of the Capstone Project 1 course. The course "Capstone Project 2" is a self-made development related to the solution of theoretical issues and experimental research or to the solution of applied problems that are part of the research work carried out by the department or enterprise.	5	V		V		v	V	
50	SCADA system	This course is intended for students to study the principles of building software and hardware complexes (STC), choosing hardware, learning the principles of building and choosing SCADA systems when solving problems of automation of technological processes and industries. As a result of mastering the discipline, the student will be able to develop a justification and choice of automated tasks, to make the most appropriate choice of hardware and software. The study of the SCADA-system gives a visual representation of the process and provides, as a rule, a graphical interface to the operator for monitoring and control.	5				V			
	Theory and practice of project management	The discipline is aimed at studying the general trends of project management in market conditions in order to increase productivity in the professional industry. The essence, concept, composition, tasks and problems of management. Study of the scientific methodology of project management. The concept of organization, the external and internal environment of the team, communication. Requirements for project management. The role of decision-making in project management. The concept of anti-crisis	5	V					V	

				1	 -	1	-	-	-	Г	ı	 -	
		programs in the performance of managerial											
		functions. The concept of management culture and											
		professional etiquette.											
52 I	ndustrial robot control systems	The discipline studies industrial programming	5					V					
		languages for controllers STL, LAD, FBD and						•					
		microprocessor programming languages C, Python.											
		Methods for creating variables, working with logical,											
		mathematical operators. Processing of discrete and											
		analog signals and interfaces SPI, I2C, CAN, UART.											
		Implementation of PID/PI/PD controllers.											
53 R	Robotics automation of production	The disciplines "Robotization of production	5	V								v	
	processes	processes" are aimed at preparing students for		•								•	
		independent theoretical, experimental, design and											
		implementation work in the field of robotization of											
		industries in various industries. Issues related to the											
		appointment, the device, and the process of											
		functioning of robots and robotic technological											
		complexes used in various technological processes in											
		engineering are considered. The objectives of the											
		study of discipline is the assimilation of theoretical											
		foundations and the acquisition of practical skills											
		necessary for the development of robotic systems and											
		complexes for the robotization of technological											
		operations and processes in various fields of											
		engineering. As a result of studying the discipline, the											
		trainee must know: the device of robotic systems and											
		complexes for various purposes used in various											
		industries and industries; content and work on the											
		creation of robotic technological complexes in											
		various industries. To be able: to set and solve											
		scientific and practical tasks on robotization, to											
		develop systems and complexes of robotization.											
54 Iı	ndustrial regulators	The aim and objectives of the course is to give	5				v						
	- C	students the skills to work with industrial regulators,					V						
		familiarization with the features of real regulators,											
		mastering the knowledge and skills necessary to											
		configure and implement industrial regulators. The											
		course includes sections. Methods of tuning											
		industrial regulators. Features of real industrial											
		regulators, noise and integral saturation. Discrete											

		1							ı ı	- 1	
		regulators, types and structures of industrial									
		regulators, methods of their tuning.									
55	Design of robotization systems	The discipline examines the types and definition of	5				V				
		robots, areas of knowledge for robotic design. Design									
		systems. Modeling tools in Computer Aided Design									
		System. Elements of robotic designs. Actuating									
		devices of robots. Types of control of robotic									
		systems. Sensors. Features of the design of control									
		system of intelligent robots. The purpose of the									
		course is to give students the formation of									
		knowledge, skills and abilities necessary for									
		engineering work in the field of designing systems of									
		automation and robotization of industrial objects.									
56	Design of automation systems	The course is designed to instill in students the	5				V				
		methods of designing automated control systems.									
		The student will master practical skills and abilities									
		in the field of automation systems design; get									
		acquainted with the trends in the development of									
		science and technology and their impact on									
		automation; study regulatory documents, state									
		standards for the design of automation systems, the									
		essence of a systematic approach to design,									
		requirements for modern control systems; the									
		structure and purpose of the state system of devices;									
		various structural and functional schemes of control									
		systems; basic algorithms that ensure the operation of									
		typical industrial regulators; technical means of									
		automation systems; modern technical and software									
		tools of computer technology.									
57	Reliability of technical systems	The discipline "reliability of technical systems"	5					V			
		covers the following main areas. Modern scientific						•			
		ideas in the development of safety assessment of									
		technical systems. Theory of reliability of devices,									
		machines and structures. Reliability indicators,									
		mathematical models of reliability and viability.									
		Mathematical expectations of the number of failures									
		and the application of the theory of reliability and									
		viability to the design conditions of machines and									
		structures. The theory of tolerance. Models of									
		damage accumulation. Mechanics of fatigue disorder.									
		Forecasting at the design stage. Control of									

		breakdowns of machines and mechanisms.								
		Maintenance planning.								ì
58	Reliability of automation systems	The purpose of studying the discipline is to study methods for assessing the reliability of automated systems at the design stage, to study methods for assessing the reliability of systems in operation, to apply probability theory to predict and prevent equipment failures, to study methods for diagnosing existing equipment. The course examines the issues of determining reliability indicators, the physical nature and causes of failures, their types and classification. Special attention is paid to the issues of monitoring the operability of automated systems, troubleshooting and ensuring operational reliability.	5					v		
59	Installation and adjustment of robotic systems	The discipline studies general information about the organization and conduct of installation works of robotic systems. Installation and commissioning and testing of mechatronic systems. Principle structural diagrams, automation diagrams, connection and wiring diagrams of mechatronic systems. Safety measures during installation and commissioning of mechatronic systems. Types of technical documentation during installation works. The aim of the course is to form a comprehensive knowledge of the processes and relationships between mechanical and electrical elements in microprocessor-controlled electromechanical systems.	4						V	
60	Installation and adjustment of electrical devices of control systems	This discipline is designed to study the implementation of installation work, training in the organization and methods of installation and adjustment of automation control equipment. The purpose of the course is to give students the necessary amount of theoretical knowledge on the technology of installation, adjustment and safe operation of measuring and control instruments. As a result of mastering the discipline, the student must teach modern methods of installation and adjustment of automation systems, to adjust automation systems.	4						v	
61	Automation of typical technological processes and	This discipline is designed to study the methodology for analyzing typical technological objects as control	5	 					V	·

	productions	objects, as well as setting control tasks, the structure		l					1		
	productions	of modern process control systems, their varieties and									
		composition. The purpose of studying the discipline									
		is to give students a fairly complete understanding of									
		the concepts of Automation of process control									
		systems. As a result of mastering the discipline, the									
		student must know the basic constructions and									
		architecture of control systems, be able to reasonably									
		choose technical means of automation.									
62	Internet of things (IoT)	The discipline Technology of Internet of Things is	6			V				V	
	technologies	designed to familiarize students with the principles of									
		construction and operation of digital devices for									
		further application of the acquired knowledge in the									
		development and design of automated systems based									
		on IoT. By the end of the training students will know:									
		- rules of safe work and requirements for the									
		organization of the workplace; - basics of									
		programming microcontrollers for controlled									
		technical systems; - basics of sensors application; -									
		basics of the creation of controlled systems. By the									
		end of the training the students will be able to: -									
		observe the rules of safe work; - program									
		microcontrollers for controlled technical systems; -									
		select, connect and configure sensors; - develop									
		controlled systems on the Internet of Things									
		technology.									
63	Local control systems	The aim of the course is to train specialists possessing	4								
03	Local control systems	the theoretical apparatus underlying the theory of	•				V				
		local control systems (LCS). Course objectives - the									
		study of modern methods of local control systems									
		analysis. The course includes sections of the theory									
		of automatic control associated with the tasks of									
		analysis and synthesis of local control systems.									
		Competencies, acquired during the course -									
		Theoretical skills in the analysis and design of LSCs;									
		- practical skills in the calculation of typical									
		regulators of automation systems of technological									
<u> </u>		processes.									
64	Typical automation system	The aim of the course is to study the methods, means	4				V				
	regulators	of tuning and practical implementation of typical									
		regulators of automation systems. Course objectives									

- mastering the knowledge necessary for empirical							
and analytical tuning of typical regulators of							
automation systems. The course includes sections:							
typical laws of regulation, empirical and analytical							
methods of tuning of typical automation controllers,							
types and structures of typical controllers. By the end							
of the course students will be able to solve applied							
problems in the synthesis of various automation							
systems. They will acquire the skills to configure							
typical controllers of automation systems.							

5. Curriculum of the educational program KAZAKH NATROVAL RESEARCH TECHNICAL UNIVERSITY missed sfor K.LSA SATBAYEV CURRICULUM on conditional for 2023-2024 academic year CYCLE OF CENERAL EDUCATION DISCIPLINES (GEB) 8 240 6/6/8 £29 Diferrelii 1 M-3. Module of information technol-CSE 677 Information and communication technologies (in English) 5 250 2710 500 E GED, RC M-4. Madule of socio cultural developme HUM 132 History of Kazakleton 5 150 1003 100 SE 5 150 1003 1008 E HUM 122 Philosophy HUM 122 Philosophy HUM 122 Socio-political knowledge mulde (minings, palenings) HUM 124 Socio-political knowledge mulde (minings, prochology) GEB, NC 90 1501 44 GED, BC 190 201 150 HUM Dis Tradimentals of anti-corruption cathors and law ELCST! Fundamentals of Scientific illustratio Methods NNG 408 Transmission of Environmental and Environmentals of Environmental and Environmentals. M.S. Module of anti-corruption colture, ecology and life safety have GEN, CCH 8 150 2/97 150 š. CHE the Lealing and life tubity CVCLE OF BASIC DISCIPLINES (BD) M-6, Nadade of physical and mathematical training
5 189 1602 195 E 5
5 189 1010 195 E 5
5 189 1010 195 E 5
5 189 1011 195 E 5
5 189 1011 195 E 5
M-7, Madule of basic and general technical training. MAT 101 Mathematics I PRY 111 Physics I MAT 102 Mathematics II PRY 112 Physics II GES 423 Engineering and computer (1988):
AUT444 Spinnering relies
ELC541 Extractical Foundations of
ELC541 Extractical Foundations of
ELC541 Extractical Engineering
EXOMES (Busins of Electronics
AUT43) BD, UC 190 1.03 105 E BD, UC 75 E 120 101 80, CC 190 210 HD, CC 120 ELCON Microelectronics
AUT447 Processed units of digital automotics
CHE198 Process automotics (activity 210 210 Al: (4)1 Technology of robotic production HI, UC 100 197 120 . M-8. Min de of the AUT413 Mathematical Foundations of AUT415 Optimization methods BBUC 150 297 108 . 5 10 80,UC 150 3/3/3 19 AUTANI Intelligent process control system 10,00 100 129 AUT416 Noolinear system of the automatic control

AUT415 Linear System of Automatic Control AUT 448 Local control systems MATE . PD, CCH 128 40 κ. AUT449 Typical automatics system engeleties 1111 dele of software a AUT428 Computer modeling and programming in Markah AUT428 Programming and object/hosteries 80, UC 150 2/2/6 90 ĸ 6 80, UC 150 210 96 ĸ AUT184 Microscolodic programming AUT183 Microscolodic programming for public systems AUT416 Secret autenation 1110. . 229 AUTANG Automation elements and devices NO, COM 250 . \$05 . AUT451 Elements and devices of exhausts 21/4

A Remarks	by .			M-10.	Medule o	d control	and me	starine d	reinei							
	Metrology and measurement	22,023,02		10000	2/10	1.000	-	Call Stage	- Trans	1					-	
UT193	Dyestical measuring instruments	nn.ccn		150	UII	76									Т	
CT420.	Technological measurements and devicts	800,000	*	190	1111	.98	1					8			\vdash	
LC4m	Telecommunication networks of industrial emergeises	10.COI	5	150	280	105									+	
LC425	Filter agels sensors and systems	460,440,00	17	129		717				_	_	100			_	
		M-11	Model	o firm d	2/16	198			-	1	_			_	-	
ATION.	Reliability of automation systems	17.00		10.00	relepenen 100	100	ogn of as	Tenution	and contr	rol system	4				_	
LT408	Rehability of technical systems	PD, CCH	.5	150		805		-							L	
Colt.Dis	Industrial Regulators		-	-	160	11.00	-									
	Robetic automation of production				2/10	98										
AUT167	Sactions of Sacretice	P0, CCH		159	un	98										
N5E185	Theory and practice of project correspondent	150				201	100									Г
AUT 419	Design of nationaline systems	PR-CCH	4	159	201	101	1									
AUTIO	Design of robotication systems		100	1	280			_	_	_				-	1	
AUTees	Microprocessor-based systems in the control resistant				120	98									Г	
AUTH44	Capations research project 1	РВ, ССИ		100	954	100		-	-	-	-		_	4	-	
MITES	Budganes at 1888 1		1.7			120		-	_	_			-			
	technologies				311/1	105										
	SCADA-quine	эр.сси	00	1,500	2/10	146	1000									
AUT445	Capstone research project 2	- Meech	. 5	150	003	105									17	
1000	- Toyour Control of the Control of t			M	-12. Mods	de of pro	dessional	disciplin	9						_	
ALTER	Actuators of Automation Systems				210											
AUT198	Industrial robots and exampalator	BB, CCH	.5	150	100	160	- 1								Г	
AUTele	Restallation and adjustment of electrical devices of control systems	PD, CCH	4	120	100	36										
AUT435	Installation and adjustment of reliable systems				291	195										
AUTHA	Automation of typical technological processes and production	PD, CCH	5	150	MA	*	ĸ									
AUTUM	Industrial robot control systems	1			270											
					M-13, P	ractice-s	riented	nodule								
	Training Practice	BD, UC	-1						1							
	Industrial interesting I	PD, UC	- 1								1					
GENNI	Industrial interesting III	PB, DC											3.			
					M-14, N	odule of	final att	estation								
ECA109	Final examination	ZA.														
				M-1	5. Moduli	of addit	ional typ	en of train	ing							
AAP500	Military affairs	ATT	. 0													
	Total based on UNIVERSITY:							31	. 19	31	29	30	- 30	33	100	

_	Number of cordin for the entire y Cycles of dissiplines	ariod of s		edas	
Cycle code	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	required component (RC)	selverity component (CC)	component of chains (CCR)	1
GED	Cycle of general education dissiplines				. 14
BD	Cycle of basic disciplines		AT:	. 10	194
PD	Crole of profile disciplines		19	. 10	1179
	Total for theoretical training	- 50	ANI.	73	212
FA.	Soul artestation	. 8		10.1	
	TOTAL	. 80.	396	11	.140

Decision of the Academic Council of Kazate named after K.Satpayer, Protocol No.5, "14" assembler 2021 y.

Decision of the Educational and Methodological Council of Kasaria masted after K.Sarpayev, Proteod No.3. "17" accomber 2022 y.

traction of the Academia Commit of the Institute <u>\$16.3</u>3 Proposed No 201 *20 * 25 . 25.26 Zer.

Year-Restor for Academic Affairs

Sicretur of the Institute of Aul I

Bind of the Department of AaC

Regoverntains of the Council from employers

S.A. Zhantkov

H.K. Uskednyes

N.S. Aldyseve

6. Additional educational programs (Minor)

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of development additional educational programs (Minor)